Transport infrastructure and accessibility: how to foster the impacts on economic development

Emile Quinet
PSE-école des ponts, Paris
Outline

• Beyond CBA: the final effects
• What do we know about location effects
• What do we know about growth effects
• Impact of policies
To assess location and growth effects, it is necessary to go beyond CBA

BEYOND CBA
Interest and limits of traditional CBA

• Interest (unvaluable):
 – Provides an overall view of the interest of the project
 – Allows to compare different projects
• But:
 – It provides only the first round of the effects of the project:
 • The transport users
 • The environmental effects to the neighbours of the track
 – It does not provide the final effects:
 • For instance: the reduction in freight transport costs are passed on to the final consumers
 – It does not provide any break-down of the effects
 • Especially no indication on the consequences in terms of location
• Our interest: the location effects and level of economic activity effects
• The sources of knowledge:
 – Economics Analysis
 – Statistical studies
 – Results of modeling exercises
 – Ex post observations, case studies
A universal tool: accessibility

• Accessibility: an index showing how close you are from the « rest of the world »:
 – Depends on the size of nodes around you
 – Weighted by the « distance » (cost, time, ..) between you and each node
• A formula:
 – Node j has a size W_j (for instance its wealth)
 – And is distant from you by transport cost C_j
 – An accessibility index is for instance:
 – Each node is weighted proportionally to its size and inversely to its farness
• It shows how well you are located vis-à-vis the markets or the settlements or the employments

$$A = \sum_j \frac{W_j}{C_j^\alpha}$$
A universal tool: accessibility

\[A = \sum_{j} \frac{W_j}{C_j^\alpha} \]
Infrastructure improvements induce polarization and concentration

LOCATION EFFECTS
Speed distorts geography
Effect of HST in France
Speed distorts geography
Railways change accessibility: the case of Netherlands

• Maps of successive relative accessibility levels (Koopmans and alii):
 – Difference of each area to the average accessibility level of the country
 – Rail development increases disparities, induce polarization
Accessibility changes locations: the case of Netherlands

• Consequences for population location (Koopmans and alii)
 – Relation between rail accessibility and growth of population
 • Rail accessibility improvements induce population increases
 • But to a rather small extent compared to other factors such as general urbanization/crowding trends (5 to 10%?)
The lessons of economic geography

• As transport costs decrease:
 – Polarization and concentration
 – Peri-urbanisation around the stations, connections and interchanges

• When a link between two agglomerations is improved:
 – Migrations from the smaller to the larger agglomeration

• Checked by econometric studies
Spatial Modelling

• The principles of spatial models
 – A transport submodel, modelling the transport flows issued from a given economic activity
 – An economic activity model, analysing how economic activity and the corresponding transport flows are shaped by transport costs
 – Many such models: CGEurope, Rhomolo, Delta
Modelling: the case of the Grand Paris Express
Lessons from ex post studies

• Effects around stations (maximum 1 km):
 – New urbanization
 – Increase in density

• Extension of commuting to distances up to 100 km → sleeping cities
Stylized facts about the urban location effects for USA (Turner 2009)

• Effects of roads
 – Roads increase the population density nearby land.
 – Roads change the composition of production and population.
 – Roads disproportionately attract wealthier people.
 – Roads decrease density in cities.

• Effects of mass transit
 – Transit increases the population of cities.
 – Transit disproportionately attracts poorer people to cities.
Infrastructure improvements induce increase in GDP, to various extents and with heterogeneities.
A loose link between accessibility and growth

Figure 7.2.1: Accessibility and GDP per capita in NUTS-3 regions
Accessibility and economic growth

Relation of economic performance to location
- Strong underperformance
- Clear underperformance
- Underperformance
- Little underperformance
- Little overperformance
- Overperformance
- Clear overperformance
- Strong overperformance
Impact of public infrastructures on GDP

• A lot of econometric studies (Graham and Melo 2013)

<table>
<thead>
<tr>
<th>Dimension of study design</th>
<th>N</th>
<th>Share (%)</th>
<th>Mean</th>
<th>Median</th>
<th>SD</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>177</td>
<td>31.44</td>
<td>0.039</td>
<td>0.013</td>
<td>0.219</td>
<td>5.618</td>
</tr>
<tr>
<td>Other countries</td>
<td>34</td>
<td>6.04</td>
<td>0.083</td>
<td>0.082</td>
<td>0.079</td>
<td>0.950</td>
</tr>
<tr>
<td>US</td>
<td>352</td>
<td>62.52</td>
<td>0.069</td>
<td>0.014</td>
<td>0.328</td>
<td>4.775</td>
</tr>
<tr>
<td>Measure of transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monetary</td>
<td>431</td>
<td>76.55</td>
<td>0.046</td>
<td>0.010</td>
<td>0.319</td>
<td>7.006</td>
</tr>
<tr>
<td>Physical</td>
<td>132</td>
<td>23.45</td>
<td>0.108</td>
<td>0.038</td>
<td>0.134</td>
<td>1.241</td>
</tr>
<tr>
<td>Publication status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Published</td>
<td>544</td>
<td>96.63</td>
<td>0.060</td>
<td>0.015</td>
<td>0.202</td>
<td>4.896</td>
</tr>
<tr>
<td>Unpublished</td>
<td>19</td>
<td>3.37</td>
<td>0.074</td>
<td>0.051</td>
<td>0.079</td>
<td>1.072</td>
</tr>
<tr>
<td>Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole economy</td>
<td>411</td>
<td>73</td>
<td>0.065</td>
<td>0.016</td>
<td>0.179</td>
<td>2.754</td>
</tr>
<tr>
<td>Primary</td>
<td>38</td>
<td>6.75</td>
<td>0.071</td>
<td>0.051</td>
<td>0.761</td>
<td>10.718</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>65</td>
<td>11.55</td>
<td>0.082</td>
<td>0.057</td>
<td>0.423</td>
<td>5.183</td>
</tr>
<tr>
<td>Construction</td>
<td>23</td>
<td>4.09</td>
<td>-0.012</td>
<td>0.001</td>
<td>0.061</td>
<td>-5.154</td>
</tr>
<tr>
<td>Energy</td>
<td>3</td>
<td>0.53</td>
<td>-0.002</td>
<td>-0.002</td>
<td>0.001</td>
<td>-0.500</td>
</tr>
<tr>
<td>Services</td>
<td>23</td>
<td>4.09</td>
<td>-0.016</td>
<td>0.002</td>
<td>0.049</td>
<td>-3.110</td>
</tr>
<tr>
<td>Mode of transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>196</td>
<td>34.81</td>
<td>0.028</td>
<td>0.005</td>
<td>0.108</td>
<td>3.893</td>
</tr>
<tr>
<td>Airport</td>
<td>26</td>
<td>4.62</td>
<td>0.027</td>
<td>0.006</td>
<td>0.094</td>
<td>3.481</td>
</tr>
<tr>
<td>Port/ferry</td>
<td>27</td>
<td>4.80</td>
<td>0.068</td>
<td>0.016</td>
<td>0.170</td>
<td>2.495</td>
</tr>
<tr>
<td>Railway</td>
<td>32</td>
<td>5.68</td>
<td>0.037</td>
<td>0.011</td>
<td>0.097</td>
<td>2.607</td>
</tr>
<tr>
<td>Roads</td>
<td>282</td>
<td>50.09</td>
<td>0.088</td>
<td>0.045</td>
<td>0.389</td>
<td>4.435</td>
</tr>
<tr>
<td>Time frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-run</td>
<td>187</td>
<td>33.21</td>
<td>0.038</td>
<td>0.012</td>
<td>0.080</td>
<td>2.083</td>
</tr>
<tr>
<td>Intermediate-run</td>
<td>74</td>
<td>13.14</td>
<td>0.079</td>
<td>0.030</td>
<td>0.678</td>
<td>8.583</td>
</tr>
<tr>
<td>Long-run</td>
<td>302</td>
<td>53.64</td>
<td>0.069</td>
<td>0.015</td>
<td>0.197</td>
<td>2.845</td>
</tr>
<tr>
<td>Total</td>
<td>563</td>
<td>100</td>
<td>0.060</td>
<td>0.016</td>
<td>0.288</td>
<td>4.780</td>
</tr>
</tbody>
</table>

N — number of observations; SD — standard deviation; CV — coefficient of variation.
Urban economics point of view: The agglomeration effects

• When accessibility is improved, productivity and economic activity grows.
• The three effects on productivity
 – Sharing
 – Matching
 – Learning
• The effect is mainly intra-urban
• Elasticity of productivity to accessibility:
 – In the range of 2%-5%
 – Depending on the sector: larger in services, lower in primary industries
 – The effects vanish with distance: 80% within 50 km
• Improved accessibility positively impacts the labour market:
 – Decrease of unemployment
 – Reducing exclusion zones
 – Improve the situation of remote areas
Lessons of Economic geography

• General lesson:
 – Decrease in transport cost induce polarization and concentration
 – Due to increasing returns to scale and increasing variety of goods, and larger market, the « big » agglomeration benefits more

• The « problem of the three bodies »
Results of modelling (SASI): changes in accessibility ↓ GDP ↓
Lessons of ex post studies

• Rail effects on firms
 – Re-organization of firm between headquarters and affiliates
 • With increases in productivity and in employment
 – Mainly on services and tourism
 – Depending on the size of the agglomeration (larger for large agglomerations)

• Road effects on firms
 – Enlargement of markets
 – Increase in competition → increase in variety of goods and services, decrease of prices
The additionality issue

• Several approaches
 – Macro-economic impact of infrastructure on GDP
 – Agglomeration effects
 – Results of large models
 – Case studies

• Do they add each other or overlap?
 – They overlap
 – The most robust one are agglomeration effects

• Do they add to CBA results?
IMPACT OF POLICIES
Preconizations are hazardous

- No clear automatic outcome
- Specificity of each situation
 - HST in Spain
- A lot of uncertainty
Lessons from ex post studies

• Beneficial consequences are not automatic
 – The size of agglomeration matters, as well as the proximity of other cities, depending on whether they are large or small: the Lille and Macon cases
 – Urbanism around the stations
 – The importance of a pre-existing economic potential
 • The indirect effects are linked to direct effects
 – Dynamism of local authorities and entrepreneurship
Lille (1,2 Minhab, 600 km²) : Euralille
600 000 m² of offices and houses
Macon (60 000 inhabitants)
The role of public policies

• Transport policy:
 – Importance of the feeders to the main infrastructure
 – Organization of parkings around the stations

• Other public policies
 – Urban regulation for housing and offices around the stations, and farther
 • In order to facilitate the migrations and changes induced by the new infrastructure
HSTs and TGVs in France
Cooperation between public authorities and private firms

• A careful design and monitoring of urban development
• Examples:
 – Société du Grand Paris: working groups gathering the major actors of urban development around each station
 – Seine Nord Escaut: « road shows » for attracting private firms along the waterway, and fostering intermodal platforms
 – Japan Railways: the station operators act as developers around the stations
Some specific points

• The role of nodes
 – Stations are not just transport exchanges
 – Intermodal platforms foster location of activities

• Target the right sectors
 – Services and tourism for high speed transports
 – Shopping and delivery for roads
Main messages

• Infrastructures induce location effects and foster economic activity
 – To various extents depending on the mode and on the specific situation
 – The size of those effects is linked to the direct effects
• Beneficial effects are not certain
• They depends
 – First on natural tendancies;
 • it is important to have a good knowledge of them
 • as it is not sensible to fight against them
 – Second on public policies and private entrepreneurship
 • And their coordination
 • Building the infrastructure is just the first step
Thank you for your attention
A few references

- Proost S and Thisse J (2015) Skilled Cities, Regional disparities and efficient transport state of the art and a research agenda Coeure Program EU
- Bazin, Beckerich, Blanquart, Delaplace, Vanderbossche 2011 Grande vitesse ferroviaire et développement économique local, Recherche Transport Sécurité paris
A few references

- Graham, Brage-Ardao, Melo 2014 Quantifying the Economic Development Impacts of Major Transport Infrastructure Projects: A Case Study of High-Speed Rail in Spain Transportation Research Board 93rd Annual Meeting
- Kopp A Macroeconomic Productivity Effects of Road Investment – A Reassessment for Western Europe 2007 Report for the 132nd ECMT Round Table: infrastructure investment and economic productivity, Paris